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Abstract. We consider the problem of maintaining aggregates and statistics over data streams,
with respect to the last N data elements seen so far. We refer to this model as the sliding window
model. We consider the following basic problem: Given a stream of bits, maintain a count of the
number of 1’s in the last N elements seen from the stream. We show that, using O( 1

ε
log2 N) bits

of memory, we can estimate the number of 1’s to within a factor of 1 + ε. We also give a matching
lower bound of Ω( 1

ε
log2 N) memory bits for any deterministic or randomized algorithms. We extend

our scheme to maintain the sum of the last N positive integers and provide matching upper and
lower bounds for this more general problem as well. We also show how to efficiently compute the Lp

norms (p ∈ [1, 2]) of vectors in the sliding window model using our techniques. Using our algorithm,
one can adapt many other techniques to work for the sliding window model with a multiplicative
overhead of O( 1

ε
logN) in memory and a 1 + ε factor loss in accuracy. These include maintaining

approximate histograms, hash tables, and statistics or aggregates such as sum and averages.
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1. Introduction. Traditional database management systems (DBMSs) expect
all data to be managed within some form of persistent data sets. For many recent
applications, the concept of a data stream, possibly infinite, is more appropriate than
a data set. By nature, a stored data set is appropriate when significant portions
of the data are queried again and again, and updates are small and/or relatively
infrequent. In contrast, a data stream is appropriate when the data is changing
constantly (often exclusively through insertions of new elements), and it is either
unnecessary or impractical to operate on large portions of the data multiple times.

One of the challenging aspects of processing over data streams is that, while the
length of a data stream may be unbounded, making it impractical or undesirable to
store the entire contents of the stream, for many applications, it is still important to
retain some ability to execute queries that reference past data. For example, in order
to detect fraudulent credit card transactions, it is useful to be able to detect when the
pattern of recent transactions for a particular account differs significantly from the
earlier transactional history of that account. In order to support queries of this sort
using a bounded amount of storage (either in memory or in a traditional DBMS), it
is necessary to devise techniques for storing summary or synoptic information about
previously seen portions of data streams. Generally there is a tradeoff between the
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size of the summaries and the ability to provide precise answers to queries involving
past data.

We consider the problem of maintaining statistics over streams with regard to
the last N data elements seen so far. We refer to this model as the sliding window
model. We identify a simple counting problem whose solution is a prerequisite for
efficient maintenance of a variety of more complex statistical aggregates: Given a
stream of bits, maintain a count of the number of 1’s in the last N elements seen from
the stream. We show that, using O( 1

ε log
2 N) bits of memory, we can estimate the

number of 1’s to within a factor of 1 + ε. We also give a matching lower bound of
Ω( 1

ε log
2 N) memory bits for any deterministic or randomized algorithm. We extend

our scheme to maintain the sum of the last N positive integers and provide matching
upper and lower bounds for this more general problem as well.

We also show how to efficiently compute the Lp norms (p ∈ [1, 2]) of vectors in
the sliding window model using our techniques. Using our algorithm, one can adapt
many other techniques to work for the sliding window model with a multiplicative
overhead of O( 1

ε logN) in memory and a 1 + ε factor loss in accuracy. These in-
clude maintaining approximate histograms, maintaining hash tables, and maintaining
statistics and aggregates such as sum and average. Our techniques are simple and
easy to implement. We expect that it will be an attractive choice of implementation
for streaming applications.

1.1. Motivation, model, and related work. Several applications naturally
generate data streams as opposed to data sets. In telecommunications, for example,
call records are generated continuously. Typically, most processing is done by exam-
ining a call record once or operating on a “window” of recent call records (e.g., to
update customer billing information), after which records are archived and not exam-
ined again. For example, Cortes et al. [2] report working with AT&T long distance
call records, consisting of 300 million records per day for 100 million customers. A
second application is network traffic engineering, in which information about current
network performance—latency, bandwidth, etc.—is generated online and is used to
monitor and adjust network performance dynamically [7, 16]. In this application, it is
generally both impractical and unnecessary to process anything but the most recent
data.

There are other traditional and emerging applications in which data streams play
an important and natural role, e.g., web tracking and personalization (where the data
streams are web log entries or click-streams), medical monitoring (vital signs, treat-
ments, and other measurements), sensor databases, and financial monitoring, to name
but a few. There are also applications in which traditional (nonstreaming) data is
treated as a stream due to performance constraints. In data mining applications,
for example, the volume of data stored on disk is so large that it is only possible to
make one pass (or perhaps a very small number of passes) over the data [12, 11]. The
objective is to perform the required computations using the stream generated by a
single scan of the data, using only a bounded amount of memory and without re-
course to indexes, hash tables, or other precomputed summaries of the data. Another
example along these lines occurs when data streams are generated as intermediate
results of pipelined operators during evaluation of a query plan in an SQL database;
without materializing some or all of the temporary results, only one pass on the data
is possible [3].

In most of these applications, the goal is to make decisions based on the statistics
or models gathered over the “recently observed” data elements. For example, one
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might be interested in gathering statistics about packets processed by a set of routers
over the last day. Moreover, we would like to maintain these statistics in a continuous
fashion. This gives rise to the sliding window model : Data elements arrive at every
instant; each data element expires after exactly N time steps; and the portion of
data that is relevant to gathering statistics or answering queries is the set of the last
N elements to arrive. The sliding window refers to the window of active data elements
at a given time instant.

Previous work [1, 5, 13] on stream computations addresses the problems of approx-
imating frequency moments and computing the Lp differences of streams. There has
also been work on maintaining histograms [14, 10]. While Jagadish et al. [14] address
the off-line version of computing optimal histograms, Guha and Koudas [10] provide
a technique for maintaining near optimal time-based histograms in an on-line fash-
ion over streaming data. The queries that are supported by histograms constructed
in the latter work are range or point queries over the time attribute. In the earlier
work, the underlying model is that all of the data elements seen so far are relevant.
Recent work by Gilbert et al. [8] considers, among other things, the problem of main-
taining aged aggregates over data streams. For a data stream . . . , a(−2), a(−1), a(0),
where a(0) is the most recently seen data element, the λ-aging aggregate is defined
as λa(0) + λ(1 − λ)a(−1) + λ(1 − λ)2a(−2) + · · · . Aged aggregate queries tend to get
asked in the context of telecommunications data. While aging is one technique to
discount for the staleness of certain data elements, we believe that the sliding window
model is also important since, for most applications, one is not interested in gather-
ing statistics over outdated data. For instance, in network management, depending
upon the specific application, we may not want data that is a month old or a year
old to affect our decisions. Maintaining statistics like sum/average, histograms, hash
tables, frequency moments, and Lp differences over sliding windows is critical to most
applications. To our knowledge, there has been no previous work that addresses these
problems for the sliding window model.

1.2. Summary of results. We focus completely on the sliding window model
for data streams. We formulate a basic counting problem whose solution can be used
as a building block for solving most of the problems mentioned earlier.

Problem 1 (BasicCounting). Given a stream of data elements, consisting of
0’s and 1’s, maintain at every time instant the count of the number of 1’s in the last
N elements.

It is easy to verify that an exact solution requires Θ(N) bits of memory. (Note that
we measure space complexity in terms of the number of bits rather than the number
of memory words.) For most applications, it is prohibitive to use Ω(N) memory. For
instance, consider the network management application, where a large number of data
packets pass through a router every second. However, in most applications, it suffices
to produce an approximate answer. Thus our goal is to provide a good approximation
using o(N) memory.

It is interesting to observe why näıve schemes do not suffice for producing approx-
imate answers with low memory requirement. For instance, consider the scheme in
which we maintain a simple counter which is incremented upon the arrival of a data
element, which is 1. The problem is that an old data element expires at every time
instant, but we have no way of knowing whether that was a 0 or 1 and whether we
should decrement the counter. It is also natural to consider random sampling. Just
maintaining a sample of the window elements will fail in the case where the 1’s are
relatively sparse.
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Another approach is to maintain histograms. While this is the approach that we
follow, we argue that the known histogram techniques will not work. A histogram
technique is characterized by the policy used to maintain the bucket boundaries. We
would like to build time-based histograms in which every bucket represents a contigu-
ous time interval and maintains the number of 1’s that arrived in that interval. As
with all histogram techniques, when a query is presented, we may have to interpolate
in some bucket to estimate the answer because a proper subset of the buckets’ ele-
ments may have expired. Let us consider some schemes of bucketizing and see why
they will not work. The first scheme that we consider is that of dividing into k equi-
width buckets. The problem is that the distribution of 1’s in the buckets may be
nonuniform. We will incur large error when the interpolation takes place in buckets
with a majority of the 1’s. This suggests another scheme, in which we use buckets of
nonuniform width, so as to ensure that each bucket has a near-uniform number of 1’s.
The problem is that the total number of 1’s in the sliding window could change dra-
matically with time, and the current buckets may turn out to have more or less than
their fair share of 1’s as the window slides forward. Our solution is a form of a his-
togram which avoids these problems by using a set of well-structured and nonuniform
bucket sizes.

In section 2, we provide a solution for BasicCounting which uses O( 1
ε log

2 N)
bits of memory (equivalently, O( 1

ε logN) buckets of size O(logN)) and provides an
estimate of the answer at every instant that is within a 1 + ε factor of the actual
answer. Moreover, our algorithm does not require an a priori knowledge of N and
caters to the possibility that the window size can be changed dynamically. Our
algorithm is guaranteed to work with O(log2 N) memory as long as the window size
is bounded by N . The algorithm takes O(logN) worst-case time to process each
new data element’s arrival but only O(1) amortized time per element. Count queries
can be processed in O(1) time. The algorithm itself is relatively simple and easy to
implement.

Section 3 presents a matching lower bound. We show that any approximation
algorithm (deterministic or randomized) for BasicCounting with relative error 1+ε
must use Ω( 1

ε log
2 N) bits of memory. This proves that our algorithm is optimal in

terms of memory usage.

In section 4, we extend the technique to handle data elements with positive integer
values, instead of just binary values; this is referred to as the Sum problem. We
provide matching upper and lower bounds on the memory usage for this general
problem as well.

In section 5, we show how our schemes extend to a model which is more suited
for real-life applications and also explore some ideas for reducing the memory require-
ments.

In section 6, we show that we can use our techniques along with the sketching
techniques of [13] to efficiently maintain the Lp (p ∈ [1, 2]) norms of vectors in the
sliding window model.

Finally, section 7 provides a brief discussion of the application of the Basic-
Counting and Sum algorithms to adapting several other problems in the sliding
window model, such as maintaining histograms, hash tables, and statistics or aggre-
gates such as averages/sums. The reduction of these problems to BasicCounting
entails a multiplicative overhead of O( 1

ε logN) in memory and a 1 + ε factor loss in
accuracy. This serves to illustrate the usefulness of focusing on the BasicCounting
problem. We also discuss upper and lower bounds for other problems such as main-
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taining min/max, distinct values estimation, and maintaining sum in the presence of
positive and negative values.

2. Algorithm for BasicCountingBasicCountingBasicCounting. Our approach toward solving the Basic-
Counting problem is to maintain a histogram that records the timestamp of selected
1’s that are active in that they belong to the last N elements. We call this histogram
the exponential histogram (EH) for reasons that will be clear later. Before getting
into the details of our algorithms, we need to introduce some notation.

We follow the conventions illustrated in Figure 1. In particular, we assume that
new data elements are coming from the right and the elements at the left are ones
already seen. Note that each data element has an arrival time, which increments by
one at each arrival, with the leftmost element considered to have arrived at time 1.
But, in addition, we employ the notion of a timestamp, which corresponds to the
position of an active data element in the current window. We timestamp the active
data elements from right to left, with the most recent element being at position 1.
Clearly, the timestamps change with every new arrival, and we do not wish to make
explicit updates. A simple solution is to record the arrival times in a wraparound
counter of logN bits, and then the timestamp can be extracted by comparison with
the counter value of the current arrival. As mentioned earlier, we concentrate on the
1’s in the data stream. When we refer to the kth 1, we mean the kth most recent 1
encountered in the data stream.

  41    42    43   44   45      .  .  .  .  .     49    50         .  .  .  .   . Arrival time

Increasing time

.  .  .Elements

Current time instance

0     1     1     1     0     0     0     1     0     1     0     0     1     0     1     1  .  .  . 

Increasing ordering of data elements, 
histogram buckets, active 1’s

Data elements that will be seen in future

Timestamps

Window of active elements

               7     6     5       .  .  .  .  .      1

Fig. 1. An illustration for the notation and conventions followed.

For an illustration of this notation, consider the situation presented in Figure 1.
The current time instant is 49, and the most recent arrival is a zero. The element
with arrival time 48 is the most recent 1 and has timestamp 2 since it is the second
most recent arrival in the current window. The element with arrival time 44 is the
second most recent 1 and has timestamp 6.

We will maintain histograms for the active 1’s in the data stream. For every bucket
in the histogram, we keep the timestamp of the most recent 1 (called timestamp), and
the number of 1’s (called bucket size). For example, in our figure, a bucket with
timestamp 2 and size 2 represents a bucket that contains the two most recent 1’s with
timestamps 2 and 6. Note that the timestamp of a bucket increases as new elements
arrive. When the timestamp of a bucket expires (reaches N + 1), we are no longer
interested in data elements contained in it, so we drop that bucket and reclaim its
memory. If a bucket is still active, we are guaranteed that it contains at least a single
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1 that has not expired. Thus, at any instant, there is at most one bucket (the last
bucket) containing 1’s which may have expired. At any time instant, we may produce
an estimate of the number of active 1’s as follows. For all but the last bucket, we add
the number of 1’s that are in them. For the last bucket, let C be the count of the
number of 1’s in that bucket. The actual number of active 1’s in this bucket could be
anywhere between 1 and C, and so we estimate it to be C/2. We obtain the following
fact.

Fact 1. The absolute error in our estimate is at most C/2, where C is the size
of the last bucket.

Note that, for this approach, the window size does not have to be fixed a priori
at N . Given a window size S, we do the same thing as before except that the last
bucket is the bucket with the largest timestamp less than S.

2.1. The approximation scheme. We now define the EHs and present a tech-
nique to maintain them so as to guarantee count estimates with relative error at
most ε for any ε > 0. Define k = � 1

ε �, and assume that k
2 is an integer; if k

2 is not an

integer, we can replace k
2 by �k

2 � without affecting the basic results.
As per Fact 1, the absolute error in the estimate is C/2, where C is the size

of the last bucket. Let the buckets be numbered from right to left with the most
recent bucket being numbered 1. If Ci is the size of the ith bucket, we know that
the true count is at least 1 +

∑m−1
i=1 Ci since the last bucket contains at least one 1,

and the remaining buckets contribute exactly their size to the total count. Note
that m is the index of the last bucket. Thus the relative estimation error is at most
(Cm/2)/(1 +

∑m−1
i=1 Ci). We will ensure that the relative error is at most 1/k by

maintaining the following invariant.
Invariant 1. At all times, the bucket sizes C1, . . . , Cm are such that, for all

j ≤ m, we have Cj/2(1 +
∑j−1

i=1 Ci) ≤ 1
k .

Let N ′ ≤ N be the number of 1’s that are active at any instant. Then the bucket
sizes must satisfy

∑m
i=1 Ci ≥ N ′. In order to satisfy this and Invariant 1 with as few

buckets as possible, we maintain buckets with exponentially increasing sizes so as to
satisfy the following second invariant.

Invariant 2. At all times, the bucket sizes are nondecreasing, i.e., C1 ≤ C2 ≤
· · · ≤ Cm−1 ≤ Cm. Further, the bucket sizes are constrained to the following:
{1, 2, 4, . . . , 2m′} for some m′ ≤ m and m′ ≤ log 2N

k + 1. For every bucket size other

than the size of the last bucket, there are at most k
2 +1 and at least k

2 buckets of that
size.

Let Cj = 2r be the size of the jth bucket. If Invariant 2 is satisfied, then we
are guaranteed that there are at least k

2 buckets, each of sizes 1, 2, 4, . . . , 2r−1, which

have indexes less than j. Consequently, Cj ≤ 2
k (1 +

∑j−1
i=1 Ci). It follows that, if

Invariant 2 is satisfied, then Invariant 1 is automatically satisfied. If we maintain
Invariant 2, it is easy to see that, to cover all the active 1’s, we would require no more
than m ≤ (k2 +1)(log(2N

k + 1)+1) buckets. Associated with the bucket is its size and
a timestamp. The bucket size takes at most logN values, and hence we can maintain
them using log logN bits. Since a timestamp requires logN bits, the total memory
requirement of each bucket is logN + log logN bits. Therefore, the total memory
requirement (in bits) for an EH is O( 1

ε log
2 N). It is implied that, by maintaining

Invariant 2, we are guaranteed the desired relative error and memory bounds.
The query time for the EH is O(1). We achieve this by maintaining two counters:

one for the size of the last bucket (Last) and one for the sum of the sizes of all buckets
(Total). The estimate itself is Total minus half of Last. Both counters can be
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updated in O(1) time for every data element. The following is a detailed description
of the update algorithm.

Algorithm Insert.
1. When a new data element arrives, calculate the new expiry time. If the

timestamp of the last bucket indicates expiry, delete that bucket, and update
the counter Last containing the size of the last bucket and the counterTotal
containing the total size of the buckets.

2. If the new data element is 0, ignore it; otherwise, create a new bucket with
size 1 and the current timestamp, and increment the counter Total.

3. Traverse the list of buckets in order of increasing sizes. If there are k
2 + 2

buckets of the same size, merge the oldest two of these buckets into a single
bucket of double the size. (A merger of buckets of size 2r may cause the
number of buckets of size 2r+1 to exceed k

2 + 1, leading to a cascade of such
mergers.) Update the counter Last if the last bucket is the result of a new
merger.

Example 1. We illustrate the execution of the algorithm for 10 steps, where, at
each step, the new data element is 1. The numbers indicate the bucket sizes from left
to right, and we assume that k

2 = 1.
32, 32, 16, 8, 8, 4, 2, 1
32, 32, 16, 8, 8, 4, 4, 2, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 1, 1, 1 (new 1 arrived)
32, 32, 16, 8, 8, 4, 4, 2, 2, 2, 1 (merged the older 1’s)
32, 32, 16, 8, 8, 4, 4, 4, 2, 1 (merged the older 2’s)
32, 32, 16, 8, 8, 8, 4, 2, 1 (merged the older 4’s)
32, 32, 16, 16, 8, 4, 2, 1 (merged the older 8’s)

Merging two buckets corresponds to creating a new bucket whose size is equal to
the sum of the sizes of the two buckets and whose timestamp is the timestamp of the
more recent of the two buckets, i.e., the timestamp of the bucket that is to the right. A
merger requires O(1) time. Moreover, while cascading may require Θ(log 2N

k ) mergers
upon the arrival of a single new element, standard arguments allow us to argue that
the amortized cost of mergers is O(1) per new data element. It is easy to see that the
above algorithm maintains Invariant 2. We obtain the following theorem.

Theorem 1. The EH algorithm maintains a data structure which can give an
estimate for the BasicCounting problem with relative error at most ε using at
most (k2 + 1)(log(2N

k + 1) + 1) buckets, where k = � 1
ε �. The memory requirement

is logN + log logN bits per bucket. The arrival of each new element can be processed
in O(1) amortized time and O(logN) worst-case time. At each time instant, the data
structure provides a count estimate in O(1) time.

If, instead of maintaining a timestamp for every bucket, we maintain a timestamp
for the most recent bucket and maintain the difference between the timestamps for the
successive buckets, then we can reduce the total memory requirement to O(k log2 N

k ).

3. Lower bounds. We provide a lower bound which verifies that the EH al-
gorithm is optimal in its memory requirement. We start with a deterministic lower
bound of Ω(k log2 N

k ).
Theorem 2. Any deterministic algorithm that provides an estimate for the

BasicCounting problem at every time instant with relative error less than 1
k for
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some integer k ≤ 4
√
N requires at least k

16 log
2 N

k bits of memory.
The proof argument will go as follows: We will show that there are a large number

of arrangements of 0’s and 1’s such that any deterministic algorithm which provides
estimates with small relative error has to differentiate between every pair of these
arrangements. The number of memory bits required by such an algorithm must
therefore exceed the logarithm of the number of arrangements. The above argument
is formalized by the following lemma.

Lemma 1. For k/4 ≤ B ≤ N , there exist L =
(

B
k/4

)�log N
B �

arrangements of

0’s and 1’s of length N such that any deterministic algorithm for BasicCounting
with relative error less than 1

k must differentiate between any two of the arrange-
ments.

Proof. We partition a window of size N into blocks of size B, 2B, 4B, . . . , 2jB,
from right to left, for j = �log N

B �−1. Consider the ith block of size 2iB, and subdivide

it into B contiguous subblocks of size 2i. For each block, we choose k
4 subblocks and

populate them with 1’s, placing 0’s in the remaining positions. In every block, there
are

(
B
k/4

)
possible ways to place the 1’s, and therefore the total number of distinct

arrangements is L =
(

B
k/4

)�logN/B�
.

We now argue that any deterministic algorithm for BasicCounting with relative
error less than 1

k must differentiate between any pair of these arrangements. In
other words, if there exists a pair of arrangements Ax, Ay such that a deterministic
algorithm does not differentiate between them, then, after some time interval, the two
arrangements will have different answers to the BasicCounting problem, and the
algorithm will give a relative error of at least 1

k for one of them. To this end, we will
assume that the algorithm is presented with one of these L arrangements of length N ,
followed by a sequence of all 0’s of length N .

rel error > 1/6

Block 0Block 1Block 2

Ax

Ay

m = 4, k/4 = 2.

0

1

Fig. 2. A pair of arrangements that should be differentiated by any deterministic algorithm
with relative error less than 1/8.

Refer to Figure 2 for an illustration of a pair of arrangements that should be
differentiated by any deterministic algorithm with relative error less than 1

8 .
Consider an algorithm that does not differentiate between two of the above ar-

rangements Ax and Ay. We will use the numerical sequences x0, x1, . . . , xj and
y0, y1, . . . , yj for j = �log N

B � − 1 to encode the two arrangements. The ith number
in the sequence specifies the choice of the k/4 subblocks from the ith block which are
populated with 1’s. The two sequences must be distinct since the two arrangements
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being encoded are distinct. Let d be an index of a point where the two sequences dif-
fer, i.e., xd 
= yd. Then the two arrangements have a different choice of k/4 subblocks
in the dth block. Number the subblocks within block d from right to left, and let h be
the highest numbered subblock that is chosen for one of the arrangements (say, Ax)
but not for the other (Ay). Consider the time instant when this subblock h expires. At
that instant, the number of active subblocks in block d for arrangement Ax is c, where
c+1 ≤ k/4, while the number of active subblocks in block d for Ay is c+1. Since the
arrangements are followed by a sequence of 0’s, at this time, the correct answer for Ax

is c2d + k
4 (2

d − 1), while, for Ay, the correct answer is (c + 1)2d + k
4 (2

d − 1). Thus
the algorithm will give an absolute error of at least 2d−1 for one of the arrangements,
which translates to a relative error of 1

k at that point in time.

To prove Theorem 2, observe that, if we choose B =
√
Nk, then logL ≥ k

16 log
2 N

k .
We also extend the lower bound on the space complexity to randomized algorithms.

As a reminder, a Las Vegas algorithm is a randomized algorithm that always
produces the correct answer, although the running time of the algorithm may vary
with the different random choices that the algorithm makes. On the other hand,
a Monte Carlo algorithm is a randomized algorithm that sometimes produces an
incorrect solution. We obtain the following lower bounds for these two classes of
algorithms.

Theorem 3. Any randomized Las Vegas algorithm for BasicCounting with
relative error less than 1

k for some integer k ≤ 4
√
N requires at least k

16 log
2 N

k bits
of memory.

Proof. Define an algorithm A to be ε-correct for an input instance I if the value
returned by A on input I has relative error less than ε. The Yao minimax principle [15]
implies that the expected space complexity of the optimal ε-correct deterministic
algorithm for an arbitrarily chosen input distribution p is a lower bound on the
expected space complexity of the optimal ε-correct Las Vegas randomized algorithm.
Consider the uniform distribution over the input arrangements in Lemma 1. Then any
deterministic algorithm that is ε-correct for all of these instances must differentiate
between any two distinct arrangements. As a result, the expected space complexity
of an optimal deterministic algorithm on this distribution is at least equal to the
optimal coding length for the probability distribution. Since the coding length is at
least equal to the entropy of the distribution, we get the same lower bound (logarithm
of the number of instances) as in the case of a deterministic algorithm. This proves
the generalization of Theorem 2 to Las Vegas randomized algorithms.

Theorem 4. Any randomized Monte Carlo algorithm for BasicCounting with
relative error less than 1

k for some integer k ≤ 4
√
N with probability at least 1 − δ

(for δ < 1
2) requires at least

k
64 log

2 N
k − log(1− δ) bits of memory.

Proof. We use the analogous version of Yao’s minimax principle for Monte Carlo
randomized algorithms [15] to establish the lower bound for Monte Carlo algorithms.
Consider a deterministic algorithm that is ε-correct with probability at least 1 − δ
for some δ < 1

2 . As before, the input distribution p that we consider is the uniform
distribution over all of the arrangements defined in Lemma 1. Since the deterministic
algorithm is ε-correct with probability at least 1− δ, it is ε-correct for at least a 1− δ
fraction of the inputs. Thus, by arguments similar to those in the previous theorem, we
get the same lower bound except for an additive loss of log(1−δ) and a multiplicative
loss of 1

4 . Asymptotically, the lower bound does not change.

4. Beyond 0’s and 1’s. Consider now the extension of BasicCounting to the
case where the elements are positive integers.
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Problem 2 (Sum). Given a stream of data elements that are positive integers in
the range [0 . . . R], maintain at every time instant the sum of the last N elements.

One obvious way to solve the above problem would be to separately maintain
a sliding window sum for each of the logR bit positions using an EH from sec-
tion 2. As before, let k = � 1

ε �. The memory requirement for this approach would

be O(k log2 N logR) bits. Next, we present a technique that has a smaller space
requirement.

We assume that logR = o(N). This is a realistic assumption which simplifies
our calculations. We generalize the EH to this setting as follows. View the ar-
rival of a data element of value v as the arrival of v data elements with value 1 all
at the same time, and employ the same insertion procedure as before. Note that
the algorithm in section 2 does not require distinct timestamps; they are required
only to be nondecreasing. While earlier there could be at most N active 1’s, now
there could be as many as NR. The results in section 2 imply that the EH will
require at most (k2 + 1)(log(2NR

k + 1) + 1) buckets. Now each bucket will require
logN + log(logN + logR) bits of memory to store the timestamp and the size of
the bucket. Note that there are N distinct timestamps at any point (as before) but
that the bucket sizes could take on logN + logR distinct values. Thus the number of
memory bits required is(

k

2
+ 1

)(
log

(
2NR

k
+ 1

)
+ 1

)
(logN + log(logN + logR))

= O

(
1

ε
(logN + logR)(logN)

)
.

The only catch appears to be that we need Ω(R) time per insertion. The rest of the
section is devoted to devising a scheme that requires only O( logR

logN ) amortized time

and O(logN + logR) worst-case time per insertion. Note that, if R = O(poly(N)),
then the amortized insertion time becomes O(1), and the worst-case time becomes
O(logN).

Let S be the total size of the buckets at some time instant. For j ≤ log( 2NR
k + 1),

let k0, k1, . . . , kj be a sequence in which ki denotes the number of buckets of size 2
i.

Then S =
∑j

i=0 ki2
i. By Invariant 2, we have l ≤ ki ≤ l+1 for i < j and 1 ≤ kj ≤ l+1,

where l = k
2 =

� 1
ε �
2 ≥ 1. Given l ≥ 1 and S, a sequence k0, k1, . . . , kj satisfying the

above conditions is called an l-canonical representation of S. The algorithm represents
every valid sum in its l-canonical form. We claim that the l-canonical representation
of any sum S is unique and can be computed in time O(logS).

Lemma 2. The l-canonical representation of any positive number S is unique.
Proof. We give a proof by contradiction. Assume that k = (k0, k1, . . . , kj) and

k′ = (k′
0, k

′
1, . . . , k

′
j′) are two distinct l-canonical representations of S. Without loss

of generality, assume that j ≤ j′. Let d be the smallest index where the sequences
differ. We have d ≤ j since it cannot happen that they agree on all of the indices
less than or equal to j and the second sequence has nonzero components for indices
greater than j, given that they have the same sum.

Case 1 (d < j). Since l ≤ kd, k
′
d ≤ l + 1, we have |∑d

i=0 ki2
i −∑d

i=0 k′
i2

i| = 2d.

However, |∑j
i=d+1 ki2

i − ∑j′

i=d+1 k′
i2

i| = c2d+1 for some integer c ≥ 0, which is a

contradiction since |∑j
i=0 ki2

i −∑j′

i=0 k′
i2

i| = 0.
Case 2 (d = j). The sequence k′ must have nonzero indices greater than j;

otherwise, the two representations cannot give the same sum. Moreover, it cannot
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happen that kj ≤ k′
j since otherwise k

′ will have a strictly greater sum. Thus kj > k′
j ,

and kj ≤ l+1. Since k′
j is not the last index, we have k′

j ≥ l. Therefore, |k′
j −kj | ≤ 1,

which implies |∑j
i=0 ki2

i − ∑j
i=0 k′

i2
i| ≤ 2j . However,

∑
i≥j+1 2

i ≥ k′
i2

j+1, which
gives a contradiction.

The following procedure computes the l-canonical representation of S in time
O(logS).

Procedure l-Canonical. Given S, find the largest j such that 2j ≤ S
l +1, and

let S′ = S − (2j − 1)l. If S′ ≥ 2j , find m such that m2j ≤ S′ < (m + 1)2j , and

set kj = m; we are guaranteed that m < l. Let Ŝ = S′ − m2j < 2j . Let b0, . . . , bj−1

be the binary representation of Ŝ. Set ki = l + bi for i < j.

Given S and l, the l-canonical representation of S tells us the exact positions of
all of the 1’s where the buckets will start. Note that, since multiple 1’s “belong” to
the same data element, we may have multiple buckets starting at a single data ele-
ment, implying that multiple buckets could have the same timestamp. The following
observation is critical to the incremental maintenance of the buckets. The algorithm
in section 2 guarantees that, if a certain data element (which in that case was some
active 1) is not “indexed” at a certain time interval, then it will never be “indexed”
in the future. By “indexed” we mean that it is the first element of some bucket,
and hence its timestamp is maintained as the timestamp of that bucket. As time
progresses, buckets may get merged, and some data elements may not be indexed any
more. However, it never happens that an element that was not indexed at some time
gets indexed later.

The preceding observation allows us to devise the following scheme to incremen-
tally maintain the buckets with small amortized update time. Let us assume that
we know the buckets at a certain time instant. We think of each data element as a
series of 1’s. We buffer B new elements separately and maintain the sum for these
elements; that is, the EH is not updated for B steps. During this period, any query
can be answered using a combination of the EH and the buffer sum. When the
buffer gets full, we first delete any expired buckets in the EH. After the expired
buckets are deleted, let S1 be the sum of the sizes of the active buckets. Let S2 be
the sum of the elements in the buffer. We calculate the l-canonical (l = k

2 ) repre-
sentation of S1 + S2 to determine the positions of the new buckets. This requires
O(log(S1 + S2)) = O(logN + logR) time since S1 + S2 = O(NR). We then create
the new buckets using the timestamps and values of the elements in the buffer and
the timestamps and sizes of the old buckets. The total time required to process the
B elements in buffer is O(B+ logN + logR) since O(B) time suffices to maintain the
buffer sum and the number of buckets in the new histogram is O(logN+logR). Since
the time required to construct the new histogram is O(logN + logR+B), the amor-
tized update time per element is O(1 + logN+logR

B ). Choosing B = Θ(logN) makes

the amortized update time O( logR
logN ) and the worst-case time O(logN + logR). The

buffer needs O(logN(logN + logR)) memory bits, which is the same as the memory
requirement of the EH. Note that, if R is poly(N), then the amortized update time is
O(1) and the worst-case time is O(logN). We have obtained a memory upper bound
of O( 1

ε (logN + logR)(logN)) bits, as summarized in the following theorem.

Theorem 5. The generalized EH for the Sum problem maintains a data structure
which provides estimates with relative error at most ε using at most (k2 +1)(log(2NR

k +
1)+1) buckets, where k = � 1

ε �. The memory requirement is logN+log(logN+logR)

bits per bucket. The arrival of each new element can be processed in O( logR
logN ) amortized
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time and O(logN + logR) worst-case time. At each time instant, the data structure
provides a sum estimate in O(1) time.

We now prove a lower bound of Ω(1
ε (logN + logR)(logN)) bits. If logN =

Ω(logR), then the lower bound from section 3 applies. Thus we need only to con-
sider the case when R > N . We will assume that logR ≤ N

k ; in fact, we assume
logR = o(N). Consider the following arrangements. We break the window of size N
into logR blocks, each of size � N

logR�. Consider the ith block for 0 ≤ i < logR.

We choose k/4 of the � N
logR� positions and place an element with value 2i there,

setting all other elements to 0. By an argument similar to the one in section 3,
any deterministic algorithm with relative error less than 1

k must differentiate be-
tween any two of these arrangements. The total number of these arrangements

is
(
N/ logR

k/4

)logR ≥ ( 4N
k logR )

k
4 logR. The number of memory bits required is at least

k
4 logR log( 4N

k logR ) = Ω( 1
ε (logN + logR)(logN)). We assume that R > N and that

logR = O(N δ) for some δ < 1. Note that the lower bounds also apply for randomized
algorithms that provide an approximate answer.

5. Timestamps. In our model (given in section 2), we have assumed that data
items arrive at regular time intervals and arrival time increases by one with every
new data item that we have seen. However, in most real-life applications, this is
not the case, and arrival rates of data items may be bursty. Moreover, we would
like to define the sliding window based on real time. In other words, we may want
to compute statistics based on the data items that arrived over the last hour, day,
etc. It is easy to see that our algorithm can be easily adapted to do this by defining
the arrival time based on real time; i.e., the arrival time increases by one with every
clock-tick.1 We define N (size of the sliding window) as the number of clock-ticks
in the interval over which we want our sliding window to work. For example, N is
3600 if we want statistics based on the last hour, and clock-ticks occur every second.
Note that the algorithm does no work except when it sees a data item, and hence
it need not do anything during the clock-ticks for which no data items arrive. The
invariants are automatically maintained during this period, and the algorithm never
uses any extra space during this time. Hence it need not bother to delete the expired
buckets until a new data item arrives since its memory requirement does not change.
The memory requirement of the algorithm is O( 1

ε (logN)(logN + logR)), where the
second term (logN + logR) is the logarithm of the maximum sum (NR) that can
occur over N clock-ticks. Thus, if we are guaranteed that much less than N data
items arrive over any sliding window, then the memory requirement would be less.
This may happen for bursty arrival rates. In other words, our algorithm adapts its
memory requirements with the amount of data that we observe.

5.1. Approximate timestamps. The EHs developed in section 2 and sec-
tion 4 have a memory requirement of O(logN) for every bucket of the histogram.
The timestamp that we maintain with each bucket requires logN bits and domi-
nates the memory requirement of every bucket. We now explore the idea of main-
taining a coarser timestamp with every bucket which requires only log logN bits
of memory and reduces the memory requirement for the EH from O( 1

ε (log
2 N))

to O( 1
ε (logN)(log logN)). In the case of generalized EH, the memory requirement

drops to O( 1
ε (logN + logR)(log(logN + logR))). The effect of maintaining a coarser

1Equal length intervals, into which we partition time, that are assumed small enough so that no
two data items are observed within a single interval.
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timestamp is that, instead of answering the query over the last N data elements
(sliding window size), we may answer the query over the last N/c elements, where
1 ≤ c ≤ 2. In other words, we are approximating the window size to within a fac-
tor of 2. Note that this does not contradict the lower bound presented before. We
no longer guarantee that the answer that we provide has relative error at most ε as
compared to the correct answer over the last N elements. Instead, we guarantee that
the answer will have error at most ε as compared to the correct answer over the last
N/c data elements, where 1 ≤ c ≤ 2. The factor 2 can be further improved to 1+τ for
0 < τ ≤ 1, and the memory requirement for the timestamp is log logN + log( 1

τ ). The
generalization is obvious, and we explain the idea below for a factor 2 approximation.

We will explain the idea in terms of timestamps. However, as mentioned in
section 2, we do not explicitly maintain the timestamp for every bucket and instead
maintain the arrival time of the most recent (rightmost) element and calculate the
timestamp using the arrival time of the current element. The idea translates to
maintaining coarser arrival times. In sections 2 and 4, we maintained the exact
timestamp with every bucket. Instead, here we maintain the timestamp to the closest
power of 2. Thus, if the timestamp is t, where 2l−1 < t ≤ 2l (1 ≤ l ≤ �logN�),
we maintain the timestamp as 2l. In other words, we approximate the timestamp
to the closest power of 2 greater than the timestamp. Since the timestamps now
take logN distinct values, they can be stored using log logN bits. The effect of this
approximation is as follows: At any time instance, a bucket is active iff its timestamp
is less than N . Any bucket whose exact timestamp is less than N/2 will still be
considered active since the timestamp will be approximated to a value less than N/2.
On the other hand, buckets whose timestamps are greater than N/2 may be wrongly
considered inactive and hence deleted as their timestamp will be approximated to a
value no less than N . Thus, in the worst case, we are answering the query over the
last N/2 elements instead of N . If, instead, we approximate the timestamp to the
closest power of 2 less than the exact timestamp, we get that we will be answering
the query over the last cN elements, where 1 ≤ c ≤ 2.

6. Computing Lp norms for vectors. We now extend the EH technique and
combine it with the sketching technique from Indyk [13] to compute the Lp norms
of vectors in the sliding window model. Assume that the window is broken into
smaller contiguous buckets. These are numbered right to left and are denoted by
B1, B2, . . . , Bm. Consider a function f , defined over the intervals, with the following
properties:

P1. f(Bi) ≥ 0.
P2. f(Bi) ≤ poly(|Bi|).
P3. f(B1 + B2) ≥ f(B1) + f(B2), where B1 + B2 denotes the concatenation of

adjacent buckets B1 and B2.
P4. f(B1 +B2) ≤ Cf (f(B1) + f(B2)), where Cf ≥ 1 is a constant.
P5. The function f(B) admits a “sketch” which requires gf (|B|) space and is

composable; i.e., the sketch for f(B1 +B2) can be composed efficiently from
the sketches for f(B1) and f(B2).

If the function f admits these properties, then we can efficiently estimate it for sliding
windows using the EH technique. We maintain buckets with the following two invari-
ants; we also associate with every bucket a timestamp and the sketch. For now, we
assume that the sketches provide the exact value of the function f . We will shortly
relax this requirement and show that our technique works even if the sketches provide
only an approximation to the actual function value.
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Invariant 3. f(Bn+1) ≤ Cf

k

∑n
i=1 f(Bi).

Invariant 4. f(Bn+2) + f(Bn+1) >
1
k

∑n
i=1 f(Bi).

Observation 1. We estimate the function f for the current window by composing
the sketches of all but the earliest (leftmost) bucket. The leftmost bucket may have
certain expired data elements along with a suffix of data elements which are active.
Let Bx be the part (suffix) of the leftmost bucket that is active and was ignored (i.e.,
did not contribute to the estimate). Let By be the concatenation of all of the other
buckets whose sketch we compose using the sketches of the individual buckets. Then
Bx + By is the current window, and the exact answer is f(Bx + By). However, we
estimate the answer as f(By); thus we always underestimate. The relative error Er

is
f(Bx+By)−f(By)

f(Bx+By) > 0 by P1 and P3. Also, we have

Er ≤ f(Bx +By)− f(By)

f(By)
(P1, P3)

≤ Cf (f(Bx) + f(By))− f(By)

f(By)
(P4)

=
Cff(Bx)

f(By)
+ Cf − 1

≤ Cff(Bn+1)∑n
i=1 f(Bi)

+ Cf − 1 (P1, P3)

≤ C2
f

k
+ Cf − 1 (Invariant 3).

Observation 2. Invariant 4 and property P2 imply that the number of buck-
ets will be O(k logN), where N is the size of the window. Thus the memory re-
quired to maintain the timestamp and the sketches for all of the buckets will be
O(k logN(logN + gf (N))).

Hence, if we maintain the invariants along with the timestamp and the sketches,

we can estimate the function f with relative error 0 ≤ Er ≤ C2
f

k + Cf − 1 using
O(k logN(logN + gf (N))) memory bits. We can maintain the invariants along with
the timestamp and the sketches as new data elements are added. The algorithm to
do this is very similar to that for the EH.

1. When a new data element arrives, calculate the new expiry time. If the
timestamp of the last bucket indicates expiry, delete that bucket.

2. Create a new bucket with just the new data element.
3. Traverse the list of buckets from right to left. If Invariant 4 is violated for

a pair of buckets (Bn+1, Bn+2), merge them into a new bucket B′
n+1. The

sketch for this bucket is composed from the sketches for Bn+1 and Bn+2. We
may need to do more than one merge.

We argue that the algorithm maintains Invariants 3 and 4. Adding a new bucket
does not violate Invariant 3, as we increase only the size of the suffix. Whenever Invari-
ant 4 is violated, the two buckets involved satisfy f(Bn+2)+f(Bn+1) ≤ 1

k

∑n
i=1 f(Bi).

When we merge them, property P4 guarantees that f(B′
n+1) ≤ Cf (f(Bn+2)+f(Bn+1)) ≤

Cf

k

∑n
i=1 f(Bi), and hence Invariant 3 is valid for the new bucket B′

n+1. The algorithm
may need to do a lot of merges—as many as the number of buckets (i.e., O(k logN)).
However, the amortized time is O(1). We omit details dealing with the fact that the
function f for a window of size 1 may be greater than 1 although bounded by some
constant R.
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Theorem 6. A function f with properties P1–P5 can be estimated over sliding

windows with relative error 0 ≤ Er ≤ C2
f

k +Cf−1 using O(k logN(logN+gf (N))) bits
of memory.

So far we have assumed that the sketches compute the function value f exactly.
Instead, in most sketching techniques, the sketches provide a 1+ ε̂ approximation s(B)
of the actual function value f(B), i.e., (1 − ε̂)f(B) ≤ s(B) ≤ (1 + ε̂)f(B). In that
case, we maintain buckets with Invariants 3 and 4, replacing f with s. Invariant 4,
property P2, and the fact that s(B) ≤ (1 + ε̂)f(B) guarantee that the number of
buckets will be O(k logN) as before. We will now analyze the effect of approximation
due to sketches on the error.

Maintaining the invariant s(Bn+1) ≤ Cf

k

∑n
i=1 s(Bi) guarantees that f(Bn+1) ≤

(1+ ε̂)2
Cf

k

∑n
i=1 f(Bi). We will use the same technique (please refer to Observation 1)

to estimate the function f using sketch estimates s instead of f . Thus, instead of
providing the exact answer f(Bx + By), we provide the estimate as s(By). The

relative error Er is
f(Bx+By)−s(By)

f(Bx+By) . We have

Er =
f(Bx +By)− s(By)

f(Bx +By)

≤ f(Bx +By)− f(By) + f(By)− s(By)

f(By)
(P1, P3)

≤ f(Bx +By)− f(By)

f(By)
+

f(By)− s(By)

f(By)

≤ Cff(Bn+1)∑n
i=1 f(Bi)

+ Cf − 1 + ε̂ (proved earlier)

≤ (1 + ε̂)2
C2

f

k
+ Cf − 1 + ε̂.

This gives the following theorem.
Theorem 7. A function f with properties P1–P5 can be estimated over sliding

windows with relative error 0 ≤ Er ≤ (1+ ε̂)2
C2

f

k +Cf −1+ ε̂ using O(k logN(logN+
gf (N))) bits of memory, where ε̂ is the bound on relative error of the sketches.

If ε̂ can be made arbitrarily close to 0, keeping the space requirement for the
sketches (i.e., gf (|B|)) small, we can get the same error as in the previous theorem by
increasing k by a small constant factor.

6.1. Lp norms. We now argue that Lp norms (for p ∈ [1, 2]) of vectors under a
restricted model admit the properties P1–P5 and hence can be efficiently computed for
sliding windows. Consider the restricted model [13] in which the jth data element is a
pair (ij , aj), where ij ∈ [d] = {0 . . . d− 1} and aj ∈ {0 . . .M} represents an increment
to the ijth dimension of an underlying vector. Every window B represents a vector,
and its Lp(B) norm is given by Lp(B) = (

∑
i∈[d] |si|p)1/p, where si =

∑
ij=i,j∈B aj is

the sum of unexpired increments to the ith dimension.
Note that the case in which p = 1 is the same as the Sum problem. If the dimen-

sion d of the underlying vector is small, one obvious way to maintain the Lp norm is to
maintain the approximate sum for each dimension using the techniques in section 4.
It would require O( 1

ε (logN + logM)(logN)d) bits of memory and give a relative er-
ror of ε. However, for high dimensional vectors, we propose the use of sketches. We
denote (Lp(B))p by fp and estimate fp for p ∈ [1, 2]. The function fp clearly admits
properties P1–P4, assuming M ≤ NO(1). For P5, fp(B) admits a sketching technique
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which requires O(logM log(1/δ)/ε̂2) memory bits per sketch and is composable. The
technique also requires O(logM log(d/δ) log(1/δ)/ε̂2) random bits, which are common
to all sketches. (See Theorem 2 in [13].) The sketches for computing the function are
not exact; instead, they provide an approximation with relative error less than ε̂ with
probability 1− δ.

From Theorem 7, we have that, under the restricted model, we can compute fp
(i.e., (Lp(B))p) with relative error at most (1 + ε̂)2 4

k + 1+ ε̂ using O(k logN(logN +
logM log(1/δ)/ε̂2)) bits of memory. As mentioned before, an additionalO(logM log(d/δ)
log(1/δ)/ε̂2) bits of memory, which are common to all the sketches, are required.
The estimate is approximately correct with high probability. Note that computing
(Lp(B))p with a small relative error translates to computing Lp(B) with a small
relative error.

6.2. Lower bounds. The BasicCounting and Sum problems are the special
cases of computing Lp norms, where the underlying vector has a single dimension.
Thus the lower bounds for these problems apply to the problem of computing the
Lp norm. Note that the upper bounds obtained in this section match the lower bounds
asymptotically. The Lp norm for p = 0 is defined as the distinct value problem, and
we deal with this problem in section 7.

7. Applications. We briefly discuss how the EH algorithm for BasicCounting
can be used as a building block to adapt several techniques to the sliding window
model with a multiplicative overhead of O( 1

ε logN) in memory and a 1+ ε factor loss
in accuracy. The basic idea is that, to adapt to the sliding window setting a scheme
relying on exact counters for positive integers, we will use an EH to play the role
of a counter. A counter would have required Ω(logN) bits of memory, while an EH
requires O( 1

ε log
2 N) bits of memory and maintains the count with 1 + ε error.

7.1. Hash tables. This is the simplest case. Every data element gets hashed to a
bucket, and the goal is to maintain the count of elements in each hash bucket. Instead
of maintaining a counter for each bucket, we use the EH to maintain approximate
counts of the number of data elements hashed into the bucket from the last N data
elements in the stream.

7.2. Sums and averages. In section 4, we showed how to maintain the sum of
positive integer data elements using the generalized version of the EHs. This requires
O( 1

ε logN(logR + logN)) bits of memory. Since maintaining the sum would require
logN + logR bits, the multiplicative overhead is O( 1

ε logN). Maintaining averages
is similar. The average of the most recent N data elements is just the sum divided
by N . If the items are inserted irregularly in real time and we want the average
value to represent the sum divided by the number of insertions in the last N clock-
ticks, an easy solution would be to use a second instance of the EH that maintains
the count (number of insertions) approximately. Since both the sum and count have
small relative error, so will their quotient.

7.3. Histograms. Given the bucket boundaries in a histogram, we can maintain
the sum, average, and other statistics corresponding to each bucket using generalized
EH. Finding the optimal bucket boundaries to optimize the memory requirement
is an orthogonal problem. Also, equiwidth histograms are a natural choice of his-
tograms for which the bucket boundaries are fixed. Note that, unlike the histograms
discussed in [10], these are not time-based histograms but instead could be based on
any attribute of the data.



1810 M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI

7.4. Min and max. We prove a lower bound for the memory requirement of
an algorithm that maintains min or max over a sliding window. While we argue the
lower bound for the case of min, the argument for max is similar. The lower bound is
based on a counting argument like the one used to prove the lower bound for Basic-
Counting in Lemma 1. Let the data elements be drawn from a set of R distinct
numbers. Consider all nondecreasing arrangements of N numbers. The number of
such arrangements is

(
N+R−1

N

)
. Consider an algorithm that has seen one of these ar-

rangements. We claim that any deterministic algorithm that gives the correct answer
at every time instance henceforth must differentiate between any two such arrange-
ments. To this end, we assume that we will present the algorithm with a sequence
consisting of the highest number in the set, similarly to how we present the algorithm
with a sequence of 0’s in Lemma 1. Since the numbers presented to the algorithm
were nondecreasing, at any time instance, the correct answer is the value of the oldest
or least recent element which will expire in the next step. As a result, for every pair of
arrangements, there will be a time when their oldest elements differ, and hence they
have different correct answers. This proves our claim and establishes a lower bound
on the number of memory bits required, which is log

(
N+R−1

N

) ≥ N log(R/N). This
lower bound is also valid for any randomized algorithm by arguments similar to the
one in section 3. If R = poly(N), then the lower bound says that we have to store
all of the last N elements. The easiest way to maintain the exact minimum over slid-
ing windows is to do the following: Keep the subsequence of data elements in which
the leftmost item is the current minimum and the right neighbor or any element (in
the subsequence) is the minimum of the elements to the right of the element in the
stream. Such a subsequence can be maintained as a list of pairs (value, timestamp),
where the list satisfies the property that both the value and the timestamp are strictly
increasing. This scheme has a worst-case space requirement of O(N logR) bits. If
the data elements arrive in a random order, then the list that we would maintain is
analogous to the right spine of a “treap” where the timestamps are fully ordered and
the values of the data elements are heap-ordered. In that case, the expected length
of the list is O(logN), and the space complexity is given by O(logN logR).

7.5. Distinct values. It is easy to adapt the technique of Flajolet and Martin [6]
to estimate the number of distinct elements in the last N data elements. Their
probabilistic counting technique2 maintains a bitmap of size O(logR), where R is an
upper bound on the number of distinct values in the data set. In the case of sliding
windows, R ≤ N , and a bitmap of size O(logN) suffices. We also maintain with each
bit a timestamp of size O(logN). Whenever a bit is (re)set by a data element, we
update the timestamp to that of the data element. This enables us to keep track of the
bits that were set by the lastN elements. Consequently, we can estimate the number of
distinct elements with an expected relative accuracy of O( 1√

m
) using O(m log2 N) bits

of memory. Note that the lower bound for the BasicCounting problem applies to
the distinct value problem. Given an instance of the BasicCounting problem, we
can create an input where a 0 is mapped to 0 while every 1 is mapped to some
distinct value (the arrival time of the element, for instance). Then the number of
distinct values is one more than the number of 1’s. This reduction shows that the
lower bounds for the BasicCounting problem apply to the distinct value problem.

Consider the problem of estimating the number of distinct values over sliding

2The technique assumes perfect hash functions. However, it suffices to use hash functions which
do not have complete independence.
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windows in the presence of deletions. We prove a space lower bound of Ω(N) bits,
where N is the window size. Every data element consists of a value and a bit that
indicates if the value is being “inserted” or “deleted.” Consider the last N elements
that form the current window. These define a collection of values and multiplicities.
The multiplicity of a value is the number of times it is inserted in the current window
minus the number of times it is deleted from the current window. It is possible for
a value to have negative multiplicity since it may have been deleted more times than
it was inserted. The number of distinct values is the number of values that have
multiplicity greater than zero. Our lower bound holds even if we define the number
of distinct values as those with nonzero multiplicity. Given this model we claim the
following.

Claim 1. An algorithm that estimates the number of distinct values within a
factor 2 of the correct answer, over sliding windows and in the presence of deletions,
requires Ω(N) bits of space, where N is the size of the sliding window.

Proof. Consider an algorithm A that estimates the number of distinct values to
within a factor of 2, over sliding windows and in the presence of deletions. Given
any arbitrary bit vector X = {x1, x2, . . . , xN}, we present the algorithm with the
following input. Every bit xi is mapped to a value yi as follows: If xi is 1, then
yi is set to i. Otherwise, yi is set to 0. These values are input to the algorithm in
the order y1 to yN along with the additional bit that represents that these values
are being inserted. After the N values have been inserted, let S be the state of the
algorithm. We claim that we can recover the last N/2 bits of the vector X (i.e.,
{xN/2+1, xN/2+2, . . . , xN}) using the state S of the algorithm. This proves that the
information content of the state S is at least N/2 bits, and hence it would require
Ω(N) bits of space. Given the state S, we recover the last bit (xN ) as follows: We
insert N − 1 elements with value 0. The current window now contains N − 1 inserts
of value 0 and an insert of value yN , which, depending upon the value of xN , is either
0 or N . The correct answer (i.e., number of distinct values) in that case is either
1 or 2, depending upon whether xN is 0 or 1. Since the algorithm A estimates to
within a factor of 2, it will distinguish between the two cases, and we can infer the
last bit xN . If the algorithm estimates the number of distinct values to be less than 2,
then xN = 0; otherwise, xN = 1. Having inferred the last bit xN , we can infer the
previous bit xN−1 as follows: We “rewind” to the state S (state after inserting y1

to yN ). In other words, we run the algorithm from state S again, by storing the
state S. We input an element with value equal to yN and bit set to delete, followed
by N − 3 elements with value equal to 0 and bit set to insert. In other words, we
are deleting the value yN that was inserted last. The current window now consists of
N − 3 inserts of value 0 and an insert of value yN−1, which, depending on xN−1, is
either 0 or N − 1. Note that the current window also contains a pair of elements that
insert and delete the value yN . By similar arguments as before, we can now infer the
bit xN−1 since the algorithm A gives a factor 2 approximation. We can proceed this
way to infer the last N/2 bits in the order xN , xN−1, . . . , xN/2+1. To infer the xN−ith
bit (having inferred xN−i+1, . . . , xN ), start with the state S again. Input elements
with values yN−i+1, yN−i+2, . . . , yN and bit set to delete, followed by N−2i−1 inserts
of value 0. The current window will then contain N−2i−1 inserts of value 0, an insert
of value yN−i, and i pairs of inserts and deletions of values yN−i+1, yN−i+2, . . . , yN .
Again, we can infer the bit xN−i. We can do this for i < N/2.

The argument above proves that the state S essentially encodes the last N/2 bits
and probably more, proving the lower bound for the space requirement of S.



1812 M. DATAR, A. GIONIS, P. INDYK, AND R. MOTWANI

7.6. General sum. Consider the problem of maintaining the sum of the last
N integers when the integers could be positive or negative. We prove that, even if
we restrict the set of integers to {1, 0,−1}, to approximate the sum within a constant
factor requires Ω(N) bits of memory. Moreover, it is easy to maintain the sum by
storing the last N integers, which requires O(N) bits of memory. We assume that
the storage required for every integer is a constant independent of the window size N .
This proves that the complexity of the problem in the general case (i.e., allowing
positive and negative integers) is Θ(N). We now argue the lower bound of Ω(N).
Consider an algorithm A that provides a constant factor approximation to the problem
of maintaining the general sum. Given a bit vector of size N/2, we present the
algorithm A with the pair (−1, 1) for every 1 in the bit vector and the pair (1,−1)
for every 0. Consider the state (i.e., time instant) after we have presented all of the
N/2 pairs to the algorithm. We claim that we can completely recover the original
bit vector by presenting a sequence of 0’s henceforth and querying the algorithm on
every odd time instant. If the current time instant is T (after having presented the
N/2 pairs), then it is easy to see that the correct answer at time instant T + 2i − 1
(1 ≤ i ≤ N/2) is 1 iff the ith bit was 1 and −1 iff the ith bit was 0. Since the
algorithm A gives a constant factor approximation, its estimate would be positive if
the correct answer is 1 and negative if the correct answer was −1. Since the state of
the algorithm after feeding the N/2 pairs enables us to recover the bit vector exactly
for any arbitrary bit vector, it must be using at least N/2 bits of memory. This proves
the lower bound. We can state the following theorem.

Theorem 8. The space complexity of any algorithm that gives a constant factor
approximation, at every instant, to the problem of maintaining the sum of last N in-
tegers, which appear as a stream of data elements and could be positive or negative,
is equal to Θ(N).

8. Conclusion. In conclusion, this paper takes the first step toward computing
over data streams in the sliding window model. We consider the problem of main-
taining statistics over sliding windows and provide upper and lower space bounds for
various problems. It remains to consider problems like maintaining other statistics
(for instance, variance), clustering (maintaining k-medians), etc. in the sliding window
model.
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